9DaNruubYyVPlhiafsDyqJnC7l351drHlfVY7Bx4wFBe0p8bekAoDWDxVhc0
Current position: Home >> Scientific Research >> Paper Publications

Maximum relevance minimum common redundancy feature selection for nonlinear data

Hits:

Institution:数学与统计学院

Title of Paper:Maximum relevance minimum common redundancy feature selection for nonlinear data

Journal:Information Sciences

Indexed by:Article

Correspondence Author:JinXing Che,YouLong Yang, Li Li, XuYing Bai

Document Code:WOS: 000404202700006 EI:20172003671524

Document Type:J

Volume:409

Issue:10

Page Number:68-86

Translation or Not:No

Date of Publication:2017-10-01

Included Journals:EI、SCI

Date:2018-09-02

Prev One:Fuzzy rule-based oversampling technique for imbalanced and incomplete data learning

Next One:Stochastic correlation coefficient ensembles for variable selection